Extensions 1→N→G→Q→1 with N=C2 and Q=C22×S4

Direct product G=N×Q with N=C2 and Q=C22×S4
dρLabelID
C23×S424C2^3xS4192,1537


Non-split extensions G=N.Q with N=C2 and Q=C22×S4
extensionφ:Q→Aut NdρLabelID
C2.1(C22×S4) = C2×C4×S4central extension (φ=1)24C2.1(C2^2xS4)192,1469
C2.2(C22×S4) = C22×A4⋊C4central extension (φ=1)48C2.2(C2^2xS4)192,1487
C2.3(C22×S4) = C2×A4⋊Q8central stem extension (φ=1)48C2.3(C2^2xS4)192,1468
C2.4(C22×S4) = C2×C4⋊S4central stem extension (φ=1)24C2.4(C2^2xS4)192,1470
C2.5(C22×S4) = C24.10D6central stem extension (φ=1)246C2.5(C2^2xS4)192,1471
C2.6(C22×S4) = D4×S4central stem extension (φ=1)126+C2.6(C2^2xS4)192,1472
C2.7(C22×S4) = D42S4central stem extension (φ=1)246C2.7(C2^2xS4)192,1473
C2.8(C22×S4) = C22×CSU2(𝔽3)central stem extension (φ=1)64C2.8(C2^2xS4)192,1474
C2.9(C22×S4) = C22×GL2(𝔽3)central stem extension (φ=1)32C2.9(C2^2xS4)192,1475
C2.10(C22×S4) = C2×Q8.D6central stem extension (φ=1)32C2.10(C2^2xS4)192,1476
C2.11(C22×S4) = Q8×S4central stem extension (φ=1)246-C2.11(C2^2xS4)192,1477
C2.12(C22×S4) = Q84S4central stem extension (φ=1)246C2.12(C2^2xS4)192,1478
C2.13(C22×S4) = C2×C4.S4central stem extension (φ=1)64C2.13(C2^2xS4)192,1479
C2.14(C22×S4) = C2×C4.6S4central stem extension (φ=1)32C2.14(C2^2xS4)192,1480
C2.15(C22×S4) = C2×C4.3S4central stem extension (φ=1)32C2.15(C2^2xS4)192,1481
C2.16(C22×S4) = GL2(𝔽3)⋊C22central stem extension (φ=1)324C2.16(C2^2xS4)192,1482
C2.17(C22×S4) = Q8.6S4central stem extension (φ=1)324C2.17(C2^2xS4)192,1483
C2.18(C22×S4) = Q8.7S4central stem extension (φ=1)324+C2.18(C2^2xS4)192,1484
C2.19(C22×S4) = D4.4S4central stem extension (φ=1)164C2.19(C2^2xS4)192,1485
C2.20(C22×S4) = D4.5S4central stem extension (φ=1)324-C2.20(C2^2xS4)192,1486
C2.21(C22×S4) = C2×A4⋊D4central stem extension (φ=1)24C2.21(C2^2xS4)192,1488

׿
×
𝔽